

INDIAN SCHOOL AL WADI AL KABIR

\checkmark			
Class: XII	Department: SCIENCE 2022-23	Date: 24.11.2022	
Worksheet No.: 3	Topic: CHEMISTRY	Note: A4 FILE	
WITH ANSWERS	ELECTROCHEMISTRY	FORMAT	
NAME OF THE STUDENT:	CLASS & SEC:	ROLL NO.	

I. **MULTIPLE CHOICE QUESTIONS (1 MARK)**

- 1. If the half-cell reaction $A + e^{-} \rightarrow A^{-}$ has a large negative reduction potential, it follows that
 - (a) A is readily reduced
 - (b) A is readily oxidised
 - (c) A-is readily reduced
 - (d) A-is readily oxidized
- 2. The cell reaction of this galvanic cell:
 - Cu(s) / Cu²⁺ (aq) // Hg²⁺ (aq) / Hg (l) is
 - (a) $Hg + Cu^{2+} \longrightarrow Hg^{2+} + Cu$ (b) $Hg + Cu^{2+} \longrightarrow Cu^{+} + Hg^{+}$ (c) $Cu + Hg \longrightarrow CuHg$ (d) $Cu + Hg^{2+} \longrightarrow Cu^{2+} + Hg$
- 3. The conductivity of a 0.1 N KCl solution at 23°C is 0.0120hm⁻¹cm⁻¹ The resistance of cell containing the solution at the same temperature was found to be 55 ohms. The cell constant will be
 - (a) 0.142 cm⁻¹
 - (b) 0.66cm^{-1}
 - (c) 0.918cm^{-1}
 - $(d) 1.12 cm^{-1}$
- 4. If limiting molar conductivity of Ca^{2+} and Cl^{-} are 119.0 and 76.3 S cm² mol⁻¹ then the value of limiting molar conductivity of CaCl₂ will be
 - (a) $195.3 \text{ S cm}^2 \text{ mol}^{-1}$
 - (b) 271.6 S cm² mol⁻¹
 - (c) $43.3 \text{ S cm}^2 \text{ mol}^{-1}$
 - (d) $314.3 \text{ S cm}^2 \text{ mol}^{-1}$
- 5. A silver cup is plated with silver by passing 965 coulombs of electricity, the amount of silver (Atomic mass of Silver = 107.87 u) deposited is
 - (a) 9.89 g
 - (b) 107.87 g
 - (c) 1.0787 g
 - (d)1.002 g

6. The emf of the cell:

Ni / Ni²⁺ (1.0 M) // Au³⁺ (1.0 M) / Au

- $\begin{array}{l} ({\rm E}^\circ = -0.25 \ {\rm V} \ {\rm for} \ {\rm Ni}^{2+}/{\rm Ni}; \\ {\rm E}^\circ = 1.5 \ {\rm V} \ {\rm for} \ {\rm Au}^{3+}/{\rm Au}) \ {\rm is:} \\ ({\rm a}) \ 1.25 \ {\rm V} \\ ({\rm b}) \ -1.25 \ {\rm V} \\ ({\rm c}) \ 1.75 \ {\rm V} \\ ({\rm d}) \ 2.0 \ {\rm V} \end{array}$
- 7. Which of the following expression is correct for 'Ka' in terms of Λ° and Λ , where 'C' is molarity.

(a)
$$K_a = \frac{C\Lambda_m^o}{\Lambda_m(\Lambda_m^o - \Lambda)}$$

(b) $K_a = \frac{C\Lambda_m^2}{\Lambda_m^o(\Lambda_m^o - \Lambda_m)}$
(c) $K_a = \frac{C\Lambda_m^2}{\Lambda_m^o}$
(d) $K_a = \frac{C\Lambda_m^2}{(\Lambda_m^o - \Lambda_m)}$

- 8. The standard emf of a galvanic cell involving cell reaction with n = 2 is formed to be 0.295 V at 25° C. The equilibrium constant of the reaction would be
 - (a) 1.0×10^{10} (b) 2.0×10^{11} (c) 4.0×10^{12}
 - (d) 1.0×10^2

[Given $F = 96500 \pmod{1}$; R = 8.314 JK-1 mol-1]

Ag⁺(aq) + e⁻ → Ag(s) E^o = + 0.80 V ₉ Fe²⁺(aq)+ + 2e⁻ → Fe(s) E^o = - 0.44 V

What is the emf of $Fe(s) + 2Ag^{+}(aq) \rightarrow Fe^{2+}(aq) + 2Ag(s)$

- (a) 1.16 V
- (b) 1.24 V
- (c) 2.04 V
- (d) -1.16 V
- 10. Which of the following statements is not correct about an inert electrode in a cell?
- (a) It does not participate in the cell reaction.
- (b) It provides surface either for oxidation or for reduction reaction.
- (c) It provides surface for conduction of electrons.
- (d) It provides surface for redox reaction.

II. ASSERTION REASON TYPE OUESTIONS (I MARK)

For the following questions, two statements are given- one labelled Assertion (A) and theother

labelled *Reason* (R). Select the correct answer to these questions from the codes (i),(ii), (iii) and (iv) as given below

(i) Both A and R are true and R is the correct explanation of the assertion.
(ii) Both A and R are true but R is not the correct explanation of the assertion.
(iii)A is true but R is false.
(iv)A is false but R is true.

- Assertion: The resistivity for a substance is its resistance when it is one meter long and its area of cross section is one square meter. Reason: The SI units of resistivity is ohm metre (m).
- 12. Assertion: Galvanised iron does not rust.Reason: Zinc has a more negative electrode potential than iron
- 13. Assertion: Electrolytic cell uses electrical energy to carry non-spontaneous chemical reactions.

Reason: Chemical energy of a spontaneous redox reaction can be converted into electrical energy.

III. <u>2 MARKS QUESTIONS</u>

14

Calculate ΔG° for the reaction

 $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \longrightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s).$

Given : E° for $Zn^{2+}/Zn = -0.76$ V and

 E° for Cu²⁺/Cu = + 0.34 V

 $R = 8.314 JK^{-1} mol^{-1}$

 $F = 96500 \text{ C mol}^{-1}$.

15. Calculate the emf of the cell in which the following reaction takes place: $Ni(s) + 2Ag^+ (_{0.002 \text{ M}}) \rightarrow Ni^{2+} (_{0.160 \text{ M}}) + 2Ag(s).$

Given that E^0 cell = 1.05 V.

$$Log 4 = 0.6020$$

16

- (a) Out of the following pairs, predict with reason which pair will allow greater conduction of electricity :
 - (i) Silver wire at 30° C or silver wire at 60° C.
 - (ii) $0.1 \text{ M CH}_3 \text{COOH solution or 1 M CH}_3 \text{COOH solution.}$
 - (iii) KCl solution at 20° C or KCl solution at 50° C.
- (b) Give two points of differences between electrochemical and electrolytic cells.

1V <u>3 MARKS QUESTIONS</u>

17. How much charge is required for the following reductions?

(i) 1 mol of Al $^{3+}$ to Al (ii) 1 mol of Cu²⁺ to Cu (iii) 1 mol of MnO₄⁻ to Mn²⁺

18.

In the plot of molar conductivity (\wedge_m) vs square root of concentration $(c^{1/2})$, following curves are obtained for two electrolytes A and B :

Answer the following :

- (i) Predict the nature of electrolytes A and B.
- (ii) What happens on extrapolation of ∧_m to concentration approaching zero for electrolytes A and B ?
- 19. Write the cell reactions which occurs in lead storage battery when the battery is on charging mode.

V 5 MARKS OUESTIONS

- 20. (a) Give reason for the following:
 - (i) Rusting of iron is quicker in saline water than in ordinary water.
 - (ii) Aluminium metal cannot be produced by the electrolysis of aq solution of Aluminium salt.
 - (b) State two advantage of H₂-O₂ fuel cell over ordinary cell.

```
21
```

E°_{cell} for the given redox reaction is 2.71 V

$$Mg_{(s)} + Cu^{2+}_{(0.01 M)} \longrightarrow Mg^{2+}_{(0.001 M)} + Cu_{(s)}$$

Calculate E_{cell} for the reaction. Write the direction of flow of current when an external opposite potential applied is

- (i) less than 2.71 V and
- (ii) greater than 2.71 V

- 22. (i) Calculate the potential of hydrogen electrode in contact with a solution whose Ph is 10.
 - (ii) State Faraday's laws of electrolysis. How much charge in terms of Faraday is required for reduction of 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} ?

VI PASSAGE BASED /CASE STUDY BASED QUESTIONS

23. All chemical reactions involve interaction of atoms and molecules. A large number of atoms/molecules are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large number conveniently, the mole concept was introduced. All electrochemical cell reactions are also based on mole concept. For example, a 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes. The amount of products formed can be calculated by using mole concept.

The following questions are multiple choice questions. Choose the most appropriate answer:

(i) The total number of moles of chlorine gas evolved is

- (a) 0.5
- (b) 2
- (c) 1
- (d) 1.9

(ii) The total charge (coulomb) required for complete electrolysis is

- (a) 186000
- (b) 24125
- (c) 48296
- (d) 193000

(iii) In the electrolytes, the number of moles of electrons involved are

- (a) 2
- (b) 1
- (c) 3
- (d) 4

(iv) In electrolysis of aqueous NaCl solution when Pt electrode is taken, then which gas is liberated at cathode?

- (a) H₂ gas
- (b) Cl₂ gas
- (c) O₂ gas
- (d) None of these

Q. No.	ANSWERS
1.	(b)
2.	(d)
3.	(b)
4.	(b)
5.	(c)
6.	(c)
7.	(b)
8.	(a)
9.	(b)
10.	(d)
11.	(ii)
12.	(i)
13.	(ii)
14.	$E^{0}cell = E^{o}_{C} - E^{o}_{A}$ = 0.34 - (-0.76) = 1.10V
	$\Delta G^{o} = -nFE^{o}$
	$= -2 \times 1.10 \times 96500$
15	= -212300 J/mol or -212.3 kJ/mol
15.	By using Nernst equation
	$E_{Cell}^{-} - \frac{0.059}{2} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$ = 1.05 - $\frac{0.059}{2} \log \frac{[0.160]}{[0.002]^{2}}$
	$= 1.05 - 0.02955 \log \frac{0.160}{0.000004}$ $= 1.05 - 0.02955 (4 + 0.6021) = 0.914 \text{ V}$
	$-1.03 - 0.02733 (4 \pm 0.0021) - 0.714 V$

16.	(a) (i) Silver wire at 30°C because as temperature decreases, resistance				
	decreases so conduction increases.				
	(ii) 0.1 M CH ₃ COOH, because on	n dilution degree of ionization increase	ses		
	hence conduction increases.				
	(iii)KCl solution at 50°C, because at high temperature mobility of ions				
	increases and hence conductance increases				
	<u>(b)</u>				
	Electrochemical	Electrolytic			
	(1) Anode -ve	Anode +ve			
	Cathode +ve	Cathode -ve			
	(2) Convert chemical	Convert electrical			
	Energy to electrical energy	Energy to chemical energy			
17.	$Al3++3e \rightarrow Al$	11			
	The reduction will require 3 Faraday of electricity	or $3 \times 96500 - 2.895 \times 10^{5}$			
	The reduction will require 5 randomy of electricity of $3\times 30500 = 2.055\times 10^{\circ}$ C.				
	$Cu2++2e^{-} \rightarrow Cu$				
	The reduction will require 2 Faraday of electricity or $2 \times 96500 = 1.93 \times 10^{\circ}$ C.				
	MnO4−+5e−→Mn2+				
10	The reduction will require 5 Faraday of electricity	or 5×96500=4.825×10⁵C.			
18.	i)A- strong electrolyte , B-Weak electrolyte				
	ii)A°m for weak electrolytes cannot be	ϵ obtained by extrapolation while $\Lambda^{\circ}m$	for		
10	strong electrolytes can be obtained as	intercept.			
19.	$2PbSO_4(s) + 2H_2O \rightarrow Pb(s) + PbO_2(s)$				
	+ 4H*	+ SO ₄ ²⁻			
20.	(a)				
	(i) The Na \oplus and Cl \ominus present in saline y	water increase the conductance of the solution in c	ontact		
	with the metal surface. This accelerate	is the formation of Fe ⁻¹ ions and hence that of fus	a, Fe2		
	O3·xH2O				
	(ii) Aluminium cannot be produced by the electrol	ysis of an aluminium salt dissolved in water beca	use of		
	the high reactivity of aluminium with the protons of water and the subsequent formation of hydrogen.				
	(b) The advantage of water fuel cell over ordinary cell is, (i) It has high-efficiency and eco-friendly. (ii)				
	The H2O produced can be used by astronauts for drinking purposes.				

21.	i)Cu ii)Mg	$C_{cell} - \frac{0.059}{2} \log \frac{10^{-3}}{2}$ = 2.71+ 0.0295 $E_{cell} = 2.7395 V$ to Mg / Cathode to anode / Same direction g to Cu / Anode to cathode / Opposite direction
22.	(i) pH=10 pH=-log[$[H^+]=10^{-1}E=0$ $Ecell=E^{0-1}E$ (ii) (i) (ii)	Ecell=E ⁰ -0.0591log[H2]/[H+] H+] -0.0591log[H2]/[H+] -0.0591log10 ⁻¹⁰ =-0.591V Faraday's law states that the number of moles of substance produced at an electrode during electrolysis is directly proportional to the number of moles of electrons transferred at that electrode. Faraday's second law of electrolysis states that if the same amount of electricity is passed through different electrolytes, the masses of ions deposited at the electrodes are directly proportional to their chemical equivalents. $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ 6x96500 = 579000C
23.	(i) (ii) (iii) (iv)	c d a a

Prepared by:	Checked by:
Ms. Jenesha Joseph	HOD – SCIENCE